Part Number Hot Search : 
SI4927DY EZ5Z3L 1N4752 AT24C 120000 ACM1602B 20001 CAT512
Product Description
Full Text Search
 

To Download R1122N351B-TR-FE Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  r1122n series low noise 150ma ldo regulator no.ea-060-100202 1 outline the r1122n series are cmos-based voltage regulator ics with high output voltage accuracy, extremely low supply current, low on-resistance, and high ripple rejection. each of these voltage regulator ics consists of a voltage reference unit, an error amplifier, resistors, a current limit circuit, and a chip enable circuit.these ics perform with low dropout voltage and a chip enable function. the line transient response and load transient response of the r1122n series are excellent, thus these ics are very suitable for the power supply for hand-held communication equipment. the output voltage of these ics is fixed with high accuracy. since the package for these ics is sot-23-5 (mini-mold) package , high density mounting of the ics on boards is possible. features ? supply curre nt ................................................................ typ. 100 a ? standby mode curr ent .................................................. typ. 0.1 a ? dropout voltage .............................................................. typ. 0.19v (i out = 100ma 3.0v output type) ? ripple rejectio n.............................................................. typ. 80db(f = 1khz) ? temperature-drift coefficient of output voltage ............. typ. 100ppm/c ? line regulation ............................................................... typ. 0.05%/v ? output voltage accuracy................................................. 2.0% ? output voltage range..................................................... 1.5v to 5.0v (0.1v steps) ( for other voltages, please refer to mark informations.) ? package ........................................................................ sot-23 -5 (mini-mold) ? built-in chip enable circuit ( 2 types; a: active ?low?, b: active ?high?) ? built-in fold-back protection ci rcuit .................................. short cu rrent typ.30ma ? pin-out............................................................................. similar to the tk112,tk111 ? ceramic capacitors recommended to be used with this ic applications ? power source for cellular phones such as gsm, cdma ,pcs and so forth. ? power source for domestic appliances such as cameras, vcrs and camcorders. ? power source for battery-powered equipment.
r1122n 2 block diagram r1122nxx1a r1122nxx1b 31 4 + _ current limit vref v out v dd ce gnd 2 31 4 + _ current limit vref v out v dd ce gnd 2 selection guide the output voltage, the active type for the ic s can be selected at the user's request. product name package quantity per reel pb free halogen free r1122nxx1 ? -tr-fe sot-23-5 3,000 pcs yes yes xx : the output voltage can be designated in the rang e from 1.5v(15) to 5.0v(50) in 0.1v steps. (for other voltages, please refer to mark informations.) ? : designation of active type. (a) "l" active (b) "h" active
r1122n 3 pin configuration sot-23-5 1 4 5 23 (mark side) pin description pin no symbol description 1 v out output pin 2 gnd ground pin 3 v dd input pin 4 ce or ce chip enable pin 5 nc no connection absolute maximum ratings symbol item rating unit v in input voltage 7.0 v v ce input voltage ( ce or ce pin) -0.3 ~ v in +0.3 v v out output voltage -0.3 ~ v in +0.3 v i out output current 200 ma p d power dissipation (sot-23-5) ? 420 mw topt operating temperature range -40 ~ 85 c tstg storage temperature range -55 ~ 125 c ? ) for power dissipation, please refer to package information. absolute maximum ratings electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safe ty for both device and sy stem using the device in the field. the functional operation at or over these absolute maximum ratings is not assured.
r1122n 4 electrical characteristics ? r1122nxx1a topt=25 c symbol item conditions min. typ. max. unit v out output voltage v in = set v out + 1v 1ma < = i out < = 0.98 v out 1.02 v i out output current v in = set v out + 1v when v out = set v out -0.1v 150 ma v out / i out load regulation v in = set v out + 1v 1ma < = i out < = = set v out + 1v 100 170 a istandby supply current (standby) v in = v ce = set v out + 1v 0.1 1.0 a v out / v in line regulation set v out + 0.5v < = < = = 30ma 0.05 0.20 %/v rr ripple rejection f = 1khz, ripple 0.5vp-p v in = set v out + 1v 80 db v in input voltage 2.0 6.0 v v out / t opt output voltage temperature coefficient i out = 30ma ? 40 c < = topt < = c 100 ppm/ c i sc short current limit v out = 0v 30 ma r pu ce pull-up resistance 2.5 5.0 10.0 m v ceh ce input voltage ?h? 1.5 v in v v cel ce input voltage ?l? 0.00 0.25 v en output noise bw = 10hz to 100khz 30 vrms recommended operating conditions (electrical characteristics) all of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. the semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. and the semiconductor de vices may receive serious damage when they continue to operate over the recommended operating conditions.
r1122n 5 ? r1122nxx1b topt=25c symbol item conditions min. typ. max. unit v out output voltage v in = set v out + 1v 1ma < = i out < = 0.98 v out 1.02 v i out output current v in = set v out + 1v when v out = set v out ? ? ? ? ? -0.1v 150 ma v out / i out load regulation v in = set v out + 1v 1ma < = i out < = = set v out + 1v 100 170 a istandby supply current (standby) v in = set v out + 1v v ce =gnd 0.1 1.0 a v out / v in line regulation set v out + 0.5v < = < = = 30ma 0.05 0.20 %/v rr ripple rejection f = 1khz, ripple 0.5vp-p v in = set v out + 1v 80 db v in input voltage 2.0 6.0 v v out / t opt output voltage temperature coefficient i out = 30ma ? 40 c < = < = c 100 ppm/ c i sc short current limit v out = 0v 30 ma r pd ce pull-down resistance 2.5 5.0 10.0 m v ceh ce input voltage ?h? 1.5 v in v v cel ce input voltage ?l? 0.00 0.25 v en output noise bw = 10hz to 100khz 30 vrms recommended operating conditions (electrical characteristics) all of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. the semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. and the semiconductor de vices may receive serious damage when they continue to operate over the recommended operating conditions.
r1122n 6 electrical characteristics by output voltage topt = 25c dropout voltage v dif (v) output voltage v out (v) condition typ. max. 1.5 < = v out < = 1.6 0.32 0.55 1.7 < = v out < = 1.8 0.28 0.47 1.9 < = v out < = 2.3 0.25 0.35 2.4 < = v out < = 2.7 0.20 0.29 2.8 < = v out < = 5.0 i out = 100ma 0.19 0.26 operation r1122nxx1a r1122nxx1b 31 4 + _ current limit vref v out v dd ce gnd r1 r2 2 r1 r2 31 4 + _ current limit vref v out v dd ce gnd 2 in these ics, fluctuati on of the output voltage, v out is detected by feed-back regist ers r1, r2, and the result is compared with a reference voltage by the error amplifier, so that a constant voltage is output. a current limit circuit for protection at shor t mode, and a chip enable circuit, are included.
r1122n 7 test circuits in i out v dd v out gnd r1122nxx1b series ce out 1 4 2 3 2.2 f in i ss v dd v out gnd r1122nxx1b series ce out 1 4 2 3 2.2 f fig.1 standard test circuit fig.2 supply current test circuit in i out v dd v out gnd r1122nxx1b series ce out 1 4 2 3 p.g in i out v dd v out gnd r1122nxx1b series ce out i1 i2 1 4 2 3 2.2 f fig.3 ripple rejection, line transient fig.4 load transient response test circuit response test circuit
r1122n 8 technical notes when using these ics, consider the following points: phase compensation in these ics, phase compensation is made for securing st able operation even if the load current is varied. for this purpose, be sure to use a capacitor c out with good frequency characteristics and esr (equivalent series resistance). (note: when the additional ceramic capacitors are conn ected to the output pin with the output capacitor for phase compensation, the operation might be unstable. becaus e of this, test these ics with the same external components as the ones to be used on the pcb.) recommended capacitors ; grm40x5r225k6.3 (murata) grm40-034x5r335k6.3 (murata) grm40-034x5r475k6.3 (murata) pcb layout make v dd and gnd lines sufficient. if their impedance is high, picking up the noise or unstable operation may result. connect a capacitor with a capacitance of 2.2 f or more between v dd and gnd pin as close as possible. set external components, especially output capacitor as close as possible to the ics and make wiring as short as possible. typical application in v dd v out gnd r1122nxx1a series ce out cap. + cap. + in v dd v out gnd r1122nxx1b series ce out cap. + cap. + (external components) output capacitor ; ceramic 2.2 f (set output voltage in the range from 2.5 to 5.0v) ceramic 4.7 f (set output voltage in the range from 1.5 to 2.5v) input capacitor ; ceramic 2.2 f
r1122n 9 typical characteristics 1) output voltage vs. output current r1122n151b r1122n201b output voltage v out (v) v in =2.0v v in =2.5v v in =3.5v output current i out (ma) 0 100 200 300 500 400 1.6 1.8 1.4 1.2 1 0.8 0.4 0.2 0.6 0 output voltage v out (v) v in =2.3v v in =2.5v v in =3.0v v in =4.0v output current i out (ma) 0 100 200 300 500 400 2.5 2 1.5 0.5 1 0 r1122n301b r1122n401b output voltage v out (v) v in =3.3v v in =3.5v v in =4.0v v in =5.0v output current i out (ma) 0 100 200 300 500 400 3.5 3 2.5 0.5 1.5 1 2 0 output voltage v out (v) v in =4.3v v in =4.5v v in =5.0v v in =6.0v output current i out (ma) 0 100 200 300 500 400 5 4 3 1 2 0 r1122n501b output voltage v out (v) v in =5.3v v in =5.5v v in =6.0v v in =7.0v output current i out (ma) 0 100 200 300 500 400 6 5 4 1 2 3 0
r1122n 10 2) output voltage vs. input voltage r1122n151b r1122n201b output voltage v out (v) i out =1ma i out =30ma i out =50ma input voltage v in (v) 12 34 67 5 1.600 1.500 1.400 1.300 1.200 1.100 1.000 output voltage v out (v) i out =1ma i out =30ma i out =50ma input voltage v in (v) 12 34 67 5 2.100 2.000 1.900 1.800 1.700 1.600 1.500 r1122n301b r1122n401b output voltage v out (v) i out =1ma i out =30ma i out =50ma input voltage v in (v) 234 67 5 3.100 3.000 2.900 2.800 2.700 2.600 2.500 output voltage v out (v) i out =1ma i out =30ma i out =50ma input voltage v in (v) 234 67 5 4.500 4.000 3.500 3.000 2.500 r1122n501b output voltage v out (v) i out =1ma i out =30ma i out =50ma input voltage v in (v) 234 67 5 5.500 5.000 4.500 4.000 3.500 3.000 2.500
r1122n 11 3) dropout voltage vs. output current r1122n151b r1122n201b dropout voltage v dif (v) topt=-40 c topt=25 c topt=85 c output current i out (ma) 0 50 150 100 0.600 0.500 0.400 0.300 0.200 0.100 0.000 dropout voltage v dif (v) topt=-40 c topt=25 c topt=85 c output current i out (ma) 0 50 150 100 0.600 0.500 0.400 0.300 0.200 0.100 0.000 r1122n301b r1122n401b dropout voltage v dif (v) topt=-40 c topt=25 c topt=85 c output current i out (ma) 0 50 150 100 0.600 0.500 0.400 0.300 0.200 0.100 0.000 dropout voltage v dif (v) topt=-40 c topt=25 c topt=85 c output current i out (ma) 0 50 150 100 0.600 0.500 0.400 0.300 0.200 0.100 0.000 r1122n501b dropout voltage v dif (v) topt=-40 c topt=25 c topt=85 c output current i out (ma) 0 50 150 100 0.600 0.500 0.400 0.300 0.200 0.100 0.000
r1122n 12 4) output voltage vs. temperature r1122n151a/b r1122n201a/b output voltagev out (v) v in =2.5v c in =1 f c out =2.2 f i out =30ma temperature topt ( c) -50 -25 0 25 100 50 75 1.53 1.52 1.51 1.50 1.49 1.47 1.48 output voltagev out (v) v in =3.0v c in =1 f c out =2.2 f i out =30ma temperature topt ( c) -50 -25 0 25 100 50 75 2.10 2.08 2.04 2.06 2.00 2.02 1.98 1.96 1.90 1.94 1.92 r1122n301a/b r1122n401a/b output voltagev out (v) v in =4.0v c in =1 f c out =2.2 f i out =30ma temperature topt ( c) -50 -25 0 25 100 50 75 3.06 3.04 3.02 3.00 2.98 2.94 2.96 output voltagev out (v) v in =5.0v c in =1 f c out =2.2 f i out =30ma temperature topt ( c) -50 -25 0 25 100 50 75 4.08 4.06 4.04 4.00 4.02 3.98 3.92 3.96 3.94 r1122n501a/b output voltagev out (v) v in =6.0v c in =1 f c out =2.2 f i out =30ma temperature topt ( c) -50 -25 0 25 100 50 75 5.10 5.08 5.04 5.06 5.00 5.02 4.98 4.96 4.90 4.94 4.92
r1122n 13 5) supply current vs. input voltage r1122n151b r1122n201b supply current i ss ( a) input voltage v in (v) 12 34 7 56 120 100 80 60 40 20 0 supply current i ss ( a) input voltage v in (v) 12 34 7 56 120 100 80 60 40 20 0 r1122n301b r1122n401b supply current i ss ( a) input voltage v in (v) 12 34 7 56 120 100 80 60 40 20 0 supply current i ss ( a) input voltage v in (v) 12 34 7 56 120 100 80 60 40 20 0 r1122n501b supply current i ss ( a) input voltage v in (v) 12 34 7 56 120 100 80 60 40 20 0
r1122n 14 6) supply current vs. temperature r1122n151a/b r1122n201a/b supply current i ss ( a) temperature topt ( c) -50 -25 0 25 v in =2.5v c in =1 f c out =2.2 f 100 50 75 200 150 100 50 0 supply current i ss ( a) temperature topt ( c) -50 -25 0 25 v in =3.0v c in =1 f c out =2.2 f 100 50 75 200 150 100 50 0 r1122n301a/b r1122n401a/b supply current i ss ( a) temperature topt ( c) -50 -25 0 25 v in =4.0v c in =1 f c out =2.2 f 100 50 75 200 150 100 50 0 supply current i ss ( a) temperature topt ( c) -50 -25 0 25 v in =5.0v c in =1 f c out =2.2 f 100 50 75 200 150 100 50 0 r1122n501a/b supply current i ss ( a) temperature topt ( c) -50 -25 0 25 v in =6.0v c in =1 f c out =2.2 f 100 50 75 200 150 100 50 0
r1122n 15 7) ripple rejection vs. frequency r1122n151a/b r1122n201a/b ripple rejection rr (db) frequency freq (khz) 0.1 1 v in =2.5v+0.5vp-p c out =2.2 f i out =30ma 100 10 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 ripple rejection rr (db) frequency freq (khz) 0.1 1 v in =3.0v+0.5vp-p c out =2.2 f i out =30ma 100 10 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 r1122n301a/b r1122n401a/b ripple rejection rr (db) frequency freq (khz) 0.1 1 v in =4.0v+0.5vp-p c out =2.2 f i out =30ma 100 10 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 ripple rejection rr (db) frequency freq (khz) 0.1 1 v in =5.0v+0.5vp-p c out =2.2 f i out =30ma 100 10 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 r1122n501a/b ripple rejection rr (db) frequency freq (khz) 0.1 1 v in =6.0v+0.5vp-p c out =2.2 f i out =30ma 100 10 90.00 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00
r1122n 16 8) ripple rejection vs. input voltage (dc bias) r1122n301b r1122n301b ripple rejection rr (db) input voltage v in (v) 3.10 3.20 3.30 3.40 c out =ceramic 2.2 f i out =1ma 3.50 90.00 f=400hz f=1khz f=10khz 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 ripple rejection rr (db) input voltage v in (v) 3.10 3.20 3.30 3.40 c out =ceramic 2.2 f i out =10ma 3.50 90.00 f=400hz f=1khz f=10khz 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 r1122n301b ripple rejection rr (db) input voltage v in (v) 3.10 3.20 3.30 3.40 c out =ceramic 2.2 f i out =50ma 3.50 90.00 f=400hz f=1khz f=10khz 80.00 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 9) input transient response r1122n501b to p t = 2 5 c 2 1 ch1 1.00v ch2 ch1 20.0mv m20.0 s v in v out tek run : 2.50ms/s average v in =2.5v ? f tr/tf=5 s
r1122n 17 r1122n201b to p t = 2 5 c 2 1 1.00v ch2 ch1 20.0mv m20.0 s v in v out tek run : 2.50ms/s average r1122n301b to p t = 2 5 c 2 1 1.00v ch2 ch1 20.0mv m20.0 s v in v out tek run : 2.50ms/s average r1122n401b to p t = 2 5 c 2 1 1.00v ch2 ch1 20.0mv m20.0 s v in v out tek run : 2.50ms/s average v in =3.0v ? f tr/tf=5 s v in =4.0v ? f tr/tf=5 s v in =5.0v ? f tr/tf=5 s
r1122n 18 r1122n501b to p t = 2 5 c 2 1 1.00v ch2 ch1 20.0mv m20.0 s v in v out tek run : 2.50ms/s average 10) load transient response r1122n151b to p t = 2 5 c 2 1 500mv ch2 ch1 50.0mv m20.0 s i out v out tek run : 2.50ms/s average r1122n201b to p t = 2 5 c 2 1 500mv ch2 ch1 50.0mv m20.0 s i out v out tek run : 2.50ms/s average v in =6.0v ? 7.0v i out =30ma c in =none c out =2.2 f tr/tf=5 s i out =50ma ? 100ma v in =2.5v c in =2.2 f c out =2.2 f tr/tf=5 s i out =50ma ? f c out =2.2 f tr/tf=5 s
r1122n 19 r1122n301b to p t = 2 5 c 2 1 500mv ch2 ch1 50.0mv m20.0 s i out v out tek run : 2.50ms/s average r1122n401b to p t = 2 5 c 2 1 500mv ch2 ch1 50.0mv m20.0 s i out v out tek run : 2.50ms/s average r1122n501b to p t = 2 5 c 2 1 500mv ch2 ch1 50.0mv m20.0 s i out v out tek run : 2.50ms/s average i out =50ma ? f c out =2.2 f tr/tf=5 s i out =50ma ? f c out =2.2 f tr/tf=5 s i out =50ma ? f c out =2.2 f tr/tf=5 s
r1122n 20 technical notes ceramic cap. ceramic cap. spectrum analyzer i out v dd gnd v out1 ce r1122nxx1b esr 4 s.a 3 1 2 v in measuring circuit for white noise; r1122n301b the relationship between i out (output current) and esr of the output capacitor is shown in the graphs below. the conditions when the white noise level is under 40 v (avg.) are indicated by the hatched area in the graph. (note: when additional ceramic capacito rs are connected to the output pin with the output capacitor for phase compensation, operation might be unstable. because of th is, test these ics with the same external components as the ones to be used on the pcb.) (1)v in =v out +1v (2)frequency band: 10hz to 1mhz (3)temperature: 25c
3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?4ijo:plpibnbp$?df *oufsobujpobm4bmft
 4ijo:plpibnb ,piplvlv :plpibnb$juz ,bobhbxb +bqbo 1ipof 'by  3*$0)&6301& /&5)&3-"/%4
#7 ?4fnjdpoevdups4vqqpsu$fousf 1spg8),fftpnmbbo %-"ntufmwffo 5if/fuifsmboet 10#py "$"ntufmwffo 1ipof 'by  3*$0)&-&$530/*$%&7*$&4,03&"$p -ue qpps )bftvohcvjmejoh  %bfdijepoh (bohobnhv 4fpvm ,psfb 1ipof 'by  3*$0)&-&$530/*$%&7*$&44)"/()"*$p -ue 3ppn /p#vjmejoh #j#p3pbe 1v%poh/fxejtusjdu 4ibohibj  1fpqmft3fqvcmjdpg$ijob 1ipof 'by  3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz ?5bjqfjp$?df 3ppn ' /p )fohzboh3e 5bjqfj$juz 5bjxbo 30$
1ipof 'by  iuuqxxxsjdpidpn-4* 5ifqspevdutboeuifqspevdutqfdjpdbujpoteftdsjcfejouijtepdvnfoubsftvckfduupdibohfps ejtdpoujovbujpopgqspevdujpoxjuipvuopujdfgpssfbtpot tvdibtjnqspwfnfou5ifsfgpsf cfgpsf efdjejohupvtfuifqspevdut qmfbtfsfgfsup3jdpitbmftsfqsf tfoubujwftgpsuifmbuftu jogpsnbujpouifsfpo 5ifnbufsjbmtjouijtepdvnfounbzopucfdpqjfepspuifsxjtfsfqspevdfejoxipmfpsjoqbsu xjuipvuqsjpsxsjuufodpotfoupg3jdpi 1mfbtfcftvsfupublfbozofdfttbszgpsnbmjujftvoefssfmfwboumbxtpssfhvmbujpotcfgpsf fyqpsujohpspuifsxjtfubljohpvupgzpvsdpvouszuifqspevdut psuifufdiojdbmjogpsnbujpo eftdsjcfeifsfjo 5ifufdiojdbmjogpsnbujpoeftdsjcfejouijtepdvnfoutipxtuzqjdbmdibsbdufsjtujdtpgboe fybnqmfbqqmjdbujpodjsdvjutgpsuifqspevdut5ifsfmfbtfpgt vdijogpsnbujpojtopuupcf dpotusvfebtbxbssbouzpgpsbhsboupgmjdfotfvoefs3jdpit psbozuijseqbsuztjoufmmfduvbm qspqfsuzsjhiutpsbozpuifssjhiut  5ifqspevdutmjtufejouijtepdvnfoubsfjoufoefeboeeftjhofe gpsvtfbthfofsbmfmfduspojd dpnqpofoutjotuboebsebqqmjdbujpot p$?dffrvjqnfou ufmfdpnnvo jdbujpofrvjqnfou  nfbtvsjohjotusvnfout dpotvnfsfmfduspojdqspevdut bnvtfnfou frvjqnfoufud
5iptf dvtupnfstjoufoejohupvtf bqspevdujobobqqmjdbujposfrvjsjohfyusfnfrvbmjuzboesfmjb cjmjuz  gpsfybnqmf jobijhimztqfdjpdbqqmjdbujpoxifsfuifgbjmvsf psnjtpqfsbujpopguifqspevdu dpvmesftvmujoivnbojokvszpsefbui bjsdsbgu tqbdfwfijdmf ovdmfbssfbdupsdpouspmtztufn  usb$?ddpouspmtztufn bvupnpujwfboe usbotqpsubujpofrvjqnfou dpncvtujpofrvjqnfou tbgfuz efwjdft mjgftvqqpsutztufnfud
tipvmepstudpoubduvt 8fbsfnbljohpvsdpoujovpvtf$?psuupjnqspwfuifrvbmjuzboesfmjbcjmjuzpgpvsqspevdut cvu tfnjdpoevdupsqspevdutbsfmjlfmzupgbjmxjuidfsubjoqspcbcjm juz*opsefsupqsfwfoubozjokvszup qfstpotpsebnbhftupqspqfsuzsftvmujohgspntvdigbjmvsf dvt upnfsttipvmecfdbsfgvmfopvhi upjodpsqpsbuftbgfuznfbtvsftjouifjseftjho tvdibtsfevoeb odzgfbuvsf psfdpoubjonfou gfbuvsfboegbjmtbgfgfbuvsf8fepopubttvnfbozmjbcjmjuz pssftqpotjcjmjuzgpsbozmpttps ebnbhfbsjtjohgspnnjtvtfpsjobqqspqsjbufvtfpguifqspevdut  "oujsbejbujpoeftjhojtopujnqmfnfoufejouifqspevduteftdsjcfejouijtepdvnfou  1mfbtfdpoubdu3jdpitbmftsfqsftfoubujwfttipvmezpvibwfboz rvftujpotpsdpnnfout dpodfsojohuifqspevdutpsuifufdiojdbmjogpsnbujpo 3*$0)$0.1"/: -5% &mfduspojd%fwjdft$pnqboz  ricoh presented with the japan management quality award for 1999 . ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.  ricoh awarded iso 14001 certification. the ricoh group was awarded iso 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. our current aim is to obtain iso 14001 certification for all of our business offices. ricoh completed the organization of the lead-free production for all of our products. after apr. 1, 2006, we will ship out the lead free products only. thus, all products that will be shipped from now on comply with rohs directive.


▲Up To Search▲   

 
Price & Availability of R1122N351B-TR-FE

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X